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Supersymmetry and Superfields in Three
Euclidean Dimensions
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The simplest supersymmetry algebra and superspace in three-dimensional Euclidean
(3dE) space is examined. Representations of the algebra are considered and the impli-
cations of restricting the space of states to states with positive definite norm are deter-
mined. A superspace is defined and superfields are introduced. Supersymmetric field
theory models in 3dE are described in both superfield and component field forms. The
relationship between these models and similar models in four-dimensional Minkowski
space is described.
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1. INTRODUCTION

Supersymmetry (SUSY) has been widely discussed in four-dimensional
Minkowski space (4dM) (Bailin and Love, 1994; Gatesal,, 1983; Wess and
Bagger, 1992; West, 1990); it is anticipated that SUSY will eventually be shown
to be a fundamental symmetry of nature. However, the structure of the SUSY al-
gebra depends on the nature of the space in which it is defined. A discussion of
the SUSY algebra in four-dimensional Euclidean Space (4dEfob4pace) can
be found in Lukierski and Nowicki (1983, 1984) and McKeon and Sherry (2000,
2001); the SUSY algebra in2 2 dimensions is analyzed in Brarettal. (2000)
and Ketovet al. (1992, 1993a,b). Scalar models in three-dimensional Minkowski
space (3dM or 2- 1 space) are introduced in Gatsal.(1983) and Siegel (1979),
while some of their quantum properties are elucidated in Dikes (1997), Gates
et al. (1983), McKeon and Nguyen (1999), and McKeon and Portelance&agn’
(in press). Other SUSY algebras and models are analyzed in Kugo and Townsend
(1983) and McKeon (2000a).
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2370 McKeon and Sherry

There are several motivations for examining Euclidean field theories. Vac-
uum tunneling by means of instantons involves working in Euclidean space. The
high temperature limit of al} + 1)-dimensional Minkowski space field theory is
effectively aD-dimensional Euclidean space field theory. This motivates a study
of supersymmetric theories in Euclidean spaces. This is in contrast to the use of
Euclidean space as a calculational tool to evaluate Feynman integrals (obtained
by a Wick rotation). One can generalize the Wick rotation to relate SUSY the-
ories in Euclidean spaces to SUSY theories in Minkowski spaces (McKeon and
Sherry, 2000, 2001; Mehta, 1992; Nicolai, 1978; Van Nieuwenhuizen and Waldron,
1996).

In this paper we propose to analyze the SUSY algebra and formulate super-
symmetric models directly in three-dimensional Euclidean space (3dE+d 3
dimensions) much as we have done in 4dE (McKeon and Sherry, 2000, 2001).
The nature of SUSY in 3- 0 dimensions is quite different from that of SUSY in
2+ 1 dimensions. In 2- 1 dimensions Majorana spinors can occur (Gates.,,

1983; Kugo and Townsend 1983; McKeon, 2000a) while it is well known that in
3+ 0 dimensions they cannot. Thus int2l dimensions one can choose to use
Majorana spinorial generators in the SUSY algebra (Geated., 1983), while

in 3+ 0 dimensions, as is well known, the spinorial generators must be Dirac
spinors (Kugo and Townsend, 1983; McKeon, 2000a). As a result the simplest
self-conjugate SUSY algebra in 3dE is more akin td\ag= 2 SUSY algebra in

3dM than anN = 1 version; furthermore, a central charge necessarily occurs.

When analyzing the representations of this algebra it is found that if the
states are to have a positive definite norm then the magnitude of the momentum
must be less than the central charge: the central charge yielgspanbound on
the momentum (Salam and Strathdee, 1974a). An important consequence of this
result is that unlike the situation in 4dM or, indeed, 3dM, it is not possible to set
the central charge to zero. The central chamgestbe included in the treatment of
the SUSY algebra in 3dE. This is independent of the model being considered.

We also construct a superspace for the SUSY algebratid 2limensions.

We recall that in the 4dM superspace (Bailin and Love, 1994; Gatak, 1983;

Wess and Bagger, 1992; West, 1990) a 2-component Weyl spinor and its conju-
gate (equivalently a 4-component Majorana spinor) act as Grassmann coordinates,
while in the 3dM superspace (Gattsal,, 1983) only one 2-component Majorana
spinor Grassmann coordinate is required. This simpler superspace structure sim-
plifies the construction of supersymmetric models in 3dM: for example, a scalar
superfield automatically yields an irreducible representation of the SUSY algebra.
In contrast, the scalar superfield in 4dM yields a reducible representation of the
SUSY algebra; irreducible representations can be obtained by imposing condi-
tions, such as chirality, antichirality, or reality, on the superfield. The situation in
3dE is more akin to that in 4dM than that in 3dM. The Grassmann coordinates
in the 3dE superspace must be Dirac spinors so that there are two independent
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2-component spinorial componertisand #'. This causes the component field
expansion of the scalar superfield to be very similar to the equivalent expansion in
4dM.

Following the approach of Sohnius (1978) to the central charge iNthe2
4dM SUSY algebra, the realization of the generators of the SUSY algebra on
this superspace involves the introduction of a bosonic coordinate conjugate to the
central charge.

The analysis of scalar superfields follows quite closely the well-known anal-
ysis in 4dM (Bailin and Love, 1994; Gates al, 1983; Wess and Bager, 1992;
West, 1990). Chiral and antichiral scalar superfields can be defined. The corre-
sponding component fields are two complex spin-0 fields and a comple% spin-
field. Supersymmetric interacting models like the Wess—Zumino model in 4dM
can be written down in both superfield and component field form. Real scalar su-
perfields are also introduced. The component field expansion involves a 3-vector
field. We introduce a superfield generalizationdqfl) gauge transformations and
construct a supersymmettit(1) gauge theory analogous to super QED in 4dM.

The results that we find for the chiral and real scalar superfields, and the field
theory models constructed using them, are very reminiscent of the corresponding
results in 4dM. The similarities are most obvious when the 4dM examples are
written in 2-component form. We find that the relationship is not a simple-minded
dimensional reduction in which coordinates are merely discarded as in@&rahk
(1977) and McKeon and Sherry (2000, 2001); such a procedure does not lead to
central charges and so cannot reproduce the correct SUSY algebra in 3dE. Rather,
we show that the SUSY algebra in 3dE is the particular subalgebra of the SUSY
algebra in 4dM in which “boost” generators are discarded and momentum in the
time-like direction becomes the central charge. The outcome of this reduction
procedure is quite similar to Siegel's mass dependent central charge introduced in
Siegel (1980) in the context of 3dM. We, however, cannot discard the dependence
on the bosonic coordinate conjugate to the central charge as the central charge
forms an upper bound on the momentum.

The remainder of this paper is organized as follows. In Section 2 we examine
the SUSY algebra in 3dE; we consider the representations of this algebra and the
role played by the central charges. In Section 3 we construct the 3dE superspace
and develop our treatment of chiral superfields. In Section 4 we consider the real
superfields and the supersymmetdi¢l) gauge theory. Section 5 contains a dis-
cussion of the relationship between the SUSY algebras in 4dM and 3dE and the
consequential relationships between the models constructed in each case. In Sec-
tion 6 we consider th&l = 1 andN = 2 SUSY algebras in 3dM. We examine the
role of the central charge in thé = 2 case and note the similarity with the SUSY
algebra in 3dE. In Appendix A we include the conventions and notations which
we have used in our calculations in 3dE. Appendix B deals with a supersymmetry
algebra in 3dE in which the commutatd?q, P®] is taken to be nonzero.
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2. THE SUSY ALGEBRA IN 3dE

The simplest representation of the Dirac gamma matrices in 3dE is provided
by the standard Pauli spin matriced= 73, a = 1, 2, 3. Charge conjugation is
defined in terms of a matri€ for which

CaCt = —1T; )
the explicit form ofC (up to a phase factor which we set equal to 1) is
C=r?=Cl=-CT=-Cc*=Cc™% 2)
In 34 0 dimensions a 2-component SO(3) spigohas Hermitian conjugate
vi=v) 3)
and charge conjugate
Yo =CJ =%y, @)

¥ and its charge conjugatéc transform in exactly the same manner under
SO(3): if

v — eiE)E/Zw =Uvy (5)
then, by (1) and (4),

Yc — Uyc. (6)

From (2) and (4) itis evidentthaif)c = —y, and hence, as is well known, it
is not possible to impose a Majorana condition in 3dE equafiagdyc. Spinors
in 3dE must be Dirac; at best a pair of Dirac spingrsand vy, may together
satisfy symplectic Majorana conditiong{)c = > and 2)c = ¥1 (Kugo and
Townsend, 1983; McKeon, 2000a).

In this paper we only treat self-conjugate SUSY algebras: if a generator
O belongs to the algebra, then so also does its conju@aten this context,
the simplest possible supersymmetric extension of the P@redgebra in 3dE
(1ISO(3)) involves Dirac spinorial generatdRsand R and a central chargg:

= B Z+P3 PL-ip?
{RyRT}ZTP+Z=|:P1+IP2 Z_P3 i|1 (7a)
(R, R} = {R', R} =0, (7b)

P being the translation generator in 3dE.

Following the standard approach used ir-3 dimensions (Salam and
Strathdee, 1974a; Sohnius, 1978) we can rewrite the SUSY anticommutator in
terms of Fermionic creation and annihilation operators. In this way information
about the representations of the SUSY algebra can be deduced. Working in the
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reference frame in whictP = (0, 0, P) we see that the anticommutator (7) is
equivalent to the anticommutators

{R, Rl} =P+ 2, (8a)
{Ry, R} = —P + Z, (8b)
{Ry, Rl} = (R, Ro} = 0, (8c)

whereR = [R].

Equations (8a) and (8b) are crucial in determining the nature of the states
in an irreducible representation of the SUSY algebra. To begin with, we note
that negative norm states will necessarily occumif > Z > 0. Prohibiting the
occurrence of negative norm states means

IP| < Z, 9)

i.e., the central charge acts as @pper bound on the momentum of the state.
This feature has been noted previously i £ dimensions (McKeon and Sherry,
2000, 2001). It is quite different to what pertains in+3 dimensions, where

the central charge, if it occurs, acts as a lower bound on the magnitude of the
4-momentum.

Following from (9) we see that in 3dE the central chargadsallowed to
vanish; it must be present to guarantee nontriviality. A vanishing central charge
will ensure that only zero momentum states can exist. This feature also was present
in 4 + 0 dimensions (McKeon and Sherry, 2000, 2001) but is very different to what
pertains in 3+ 1 dimensions (Bailin and Love, 1994; Gatdsl, 1983; Wess and
Bagger, 1992; West, 1990), where the central charge can be set to zero without
trivializing the theory.

Saturation of the upper bound inherentin (9) will lead to a situation analogous
to what happens in the (8 1)-dimensional case; there, if the BPS lower bound
is saturated, then half the states in the model do not occur (Bogamolnyi, 1976;
Olive and Witten, 1978; Osborne, 1979; Prasad and Sommerfield, 1975; Sohnius,
1978). In this case, only states associated \mil*(or Rg) will occur depending
on whetherZ = P (or —P).

In order to find the representations of the SUSY algebra (7) we proceed in
the standard manner. The other commutators in the 3dE SUSY algebra are

[J3, 3] = ie?Pec, (10a)
[9° R = —5(R), (100)
[J3, PP] = je?P°PC, (10c)

[Z2,3%] =[2Z,P?] =[Z,R] =[P? R]=0. (10d)
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The operatorsl5, 2 p. j/l3|, Z, R, andR' are used to classify the states. As
the first four of these operators commute with each other we can choose to use
their simultaneous eigenstates. Essenti&ignd R will act as ladder operators
linking the states with different eigenvalues fi andP - J/|P|.

The first state we consider in our representatignwill have the following
properties:

Z|l) =2|1) >, (11a)
P2l1) = M2|1) >, (11b)
P.J
B [y =m|l) >, (11c)
P =G+ >, (11d)
RIlI)=0, i=1,2, (11e)
where|j can take on one of the vaIues%J,l, ..., andm can take on any value
intherange-j,—j +1,...,j — 1, j. The other states in the representation are
given by
y=RNI), i=12 (12a)
IF) = RIR|I). (12b)
If we align P along the third axisP = (0, 0, M), then it is easily seen that
J3|1) = mjl), (13a)
Ja|1) = <m + %) 1), (13b)
J312) = (m— %) 12), (13c)
Js|F) = m[F), (13d)
and
JPIF) = j(i + DIF), (14)

while the statesl) and|2) are, in general, superposmons of eigenstates of the
operatorJ2 corresponding to the elgenvalup:-t . The eigenvalue of the central
chargeZ is common to all the states, Zscommutes with all the other operators in
the algebra. On the other hand, we have already seen that we mushihavé.

Itis worth noting thatif | ) corresponds to a spin-0 state, wjtk= 0, thenthere
are only two spin-0 states and two spﬁrstates in the representation. However, if
[1) corresponds to a spi%wstate, there will be one spin-0 state, four séistates
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coresponding to two doublets, and a spin-1 triplet state. In all cases the number of
Fermionic states will match exactly the number of Bosonic states.

3. 3dE SUPERSPACE AND CHIRAL SUPERFIELDS

The simplest 3dE SUSY algebra, given in Egs. (7) and (10), contains two
independent Fermionic generators. As a conseqguence we use two independent 2-
component Dirac spinor Grassmann coordinates in the 3dE superspace, fiamely
andét. In addition, during to the essential and critical occurrence of the central
chargeZ, we use a fourth bosonic coordinate conjugate t&Z much as in Siegel
(1979) and Sohnius (1978). In this way superspace techniques will be similar to
those employed in 4dM (Salam and Strathdee, 1974b, 1975). The notation and
conventions used in our 3dE superspace are listed in Appendix A.

The eight coordinates in the 3dE superspace are

Z={x*a=1,273;¢6,i=1206"i=1,2. (15)
In this space the 3dE SUSY algebra of (7) and (10) can be realized by
i

R =0d — %(rae)iva — ik, (16a)
R =5 — %(efra)i Ve — iéeﬁa;, (16b)
Pt = —iV?, (16c)
Z=-ia, (16d)
and
B A %effaaﬁ + %arae. (16e)

This representation in similar to the one employed forkhe- 2 SUSY algebra
in 3dM by Sohnius (1978). The SUSY transformations generatdd layd RiT in
the 3dE superspace are

sx2 = [6TR— RTg, x¥] = —%gwae + %GTraé, (17a)
86k = [ETR— R, 6] = &, (17b)
56 = ['R - Rfg, 6]] = &/, (170)
8¢ =[t"TR-Rig ¢] = —iésfe + iéefg. (17d)

The occurrence of derivatives with respectton R and Rg is crucial to realize
the algebraic relations (7); itis not possible to realize the algebra unless such terms
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are included. The occurrence of such terms corresponding to central charges has
been previously noted (Sohnius, 1978; West, 1990) in the case-eR SUSY in
4dM.
It is possible to identify operators which anticommute wRhand Rt and
play the role of covariant derivatives for the 3dE SUSY. They are

zei a{ ’ (18a)

i

D =al + STV +
i i

D/ = o + E(effa)i Ve 4 Eeﬁac. (18b)

We now introduce scalar superfields in our 3dE superspace. These are func-
tions ofx?, ¢, #, andg' satisfying
(X, ¢, 0,01y =d(x, ¢, 0,00). (19)

An expansion of® in powers ofd andéf can be used to identify multiplets

of fields which transform among themselves under SUSY transformations.
Such a representation, however, turns out to be reducible. We can impose
a ‘chiral condition’ which is respected by the SUSY transformations,
namely

Di®=0 (20)
or an antichiral condition
D/® =0, (21)

as{D;i, Q;} = {Dy, Q]T} = 0. Such chiral, or antichiral, superfields involve com-
ponentfields which transformin anirreducible representation of the SUSY algebra,
as we demonstrate below. The expansion of a chiral scalar superfield in terms of
component fields can be written in the form

d(x?, 7,0,01) = ¢y, W) + AT(y2, w)o + F(y?, )66, (22)

where we have used

Dio; =0, (23a)
D, (xa - 'Eefrae) =Dy =0, (23b)
Di (g — 'éeTe) = Dijw = 0. (23c)

The component fieldg andF are complex scalar fields whileis a Dirac spinor
field.
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The SUSY transformations of the component fields can be simply deduced;
the unitary implementation of these transformations is

U = expg 'R — R¢] (24)
so that
@ =[§TR— Rig, @]. (25)
It follows that
8¢(x, ¢) = AT(x, Q)E, (26a)
531(x, ¢) = —iET(@alx, )T + 0 (x, 0)) — 2F(x, Q)el,  (26D)
[
BF(x, ) = 5 (M (x, 0)r%c — 4] ko) (26c)
are the component field transformations.
A supersymmetric action can be written down in terms of superfields, and
also in terms of component fields. A kinetic term is given by
& = /d3x de d%0 d?6t d* @ (27)
and a super potential by

S = / a3 dz 020 d?01 50T [Md? + gs®® + gud*] + HC.  (28)

The component field forms of the kinetic and potential terms in the action are
obtained by using the following expansion of the chiral scalar supedield

Dy, W) = (X, ¢) — dalX, @)( o't a@) . (X, 4)( 9*9)

b danlx, c)( ol a@) (gefrbe) S sl c)( e*e)z

+ ¢ a(X, ;)( 9*9) (%9%6‘9) +AT(x, )0

—ah(x, ;)e( oz ae) —aL(x, ;)9( 9*9) +F(x,20)6l6  (29)

and the formulae in Appendix A for integration over the Grassmann variables.
We find

1 1
S( = /d3x d; |:—1—6(V2¢*¢ + ¢*V2¢ - 2¢,*a¢,a) - 1_6(45*(;45 + ¢*¢,{£

i
—2¢%d.c) — é(xfarax —afeia+afa, —atn) + F2] (30)
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and
S = /d3x de [m <2¢F + %mc) + 03 (3¢2F + gmuc)

+04(40°F + 3¢2111c)] + H.C. (31)

This model, consisting of a supersymmetric action for a pair of complex spin-0
fields and a Dirac spir%—field, is the analogue of the Wess—Zumino model in 4dM.
Itis interesting to note, however, that the spinor mass term is of the Majorana type,
as are the Yukawa couplings between the spin-0 and%p‘j'mids.

4. THE REAL SCALAR SUPERFIELD AND A SUPERSYMMETRIC
U(1) GAUGE MODEL

In this section we turn our attention to supersymmetric vector field theo-
ries in 3dE. In particular, we formulate a noninteracting supersymmbeifig
gauge invariant model. We follow very closely the standard methods used in
4dM.

We saw in Section 3 thatimposing a chiral constraint on the scalar superfield
results in a highest spin component field with s%y.iﬁo include spin-1 vector fields
we must relax this condition. Nevertheless we can impose a reality condition on
the scalar superfield, now denoted Wy

V =V~ (32)
Making use of Egs (A8) and (A9) we find the most general form of this superfield
V(x,2,60,00) = C+[xT0 +0Tx] + 0t r20Vv2
+6T0E + (M +iN)6L6 + (M —iN)oToc
+ (Ato + 0t A)ote + (070)?D, (33)

where the fieldsC(x, ¢), E(X, ¢), M(X, ¢), N(x, ¢), and D(x, ¢) are real spin-0
fields, x (x, ¢) and A(x, ¢) are 2-component Dirac sp%]-flelds andva(x, ¢) is
a real spin-1 3-vector field. The superfiei(x, ¢, 6, #7) can also be termed a
vector superfield, but this identification could be misleading. However, the set of
component fields correspond to a vector supermultiplet.

Justasin 4dMthere is an interesting interplay between SUSYdhpgauge
transformations. For this reason we now consider the SUSY generalization of an
U (1) gauge transformation. A real superfield undergoes the transformation.

V> V48V =V 4i(d — o), (34)

where @ is a chiral superfield ane* is an antichiral superfield. In terms of
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component fields this corresponds to

sC=i(p* —¢), (352)

5, =ik, (35b)

Ve = 26+ 9)a, (350)

SE = (9 + "), (354)

5(M +iN) = —iF, (35€)
5&:%&%-@% (35f)

5D = ;—3(# ) (350)

A redefinition of the ¢70)?, (676)0, and ¢79)6t components of the real su-
perfield gives rise to a simpler and more useful set of component field gauge
transformations:

[\=A_'§(?.%_a§)x, (36a)
D=D+ %(VZ - 3)C. (36b)

The gauge transformations for tieand D component fields are then
SA=0, sD=0. (37)

It is also evident from the form of the gauge transformations in (35) that the
C, x, M, andN fields can be transformed to zero by an appropriate choice of the
chiral superfield components A, andF. This is the analogue of the Wess—Zumino
gauge in 4dM; in this gauge the real superfield has the form

Viwz = (0TT20)V2 + (0T0)E + (AT0 +0TA)0T0 + (976)°D.  (38)

A field strength superfield invariant under the gauge transformation (34) is
given by the chiral spinor superfield

W = (DLD)Dg V. (39)

[Since D® = 0 it follows thatD; W, = 0]. The component field expansion of this
chiral spinor superfield is, by analogy with (22),

W = Xi(y, w) + Yij (y, W) + Zi(y, w)o 6. (40)
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We can use (18) in (39) to relate the field strength component fik]d§ andZ
to the component fields of the real superfield in the Wess—Zumino gauge:

Xi(X, ) = Wi |g—gt—0= 24, (41a)
Yij (X, £) = DIWi [g_pt_o= 4D&ij — 27 - (V x V) = 2i7 - V. + 2i7 - VE, (41b)

1 i 2 .
Zi(x,¢) = Z(DTDC)VVi lo—ot—0=1T - VAc —iAc. (41c)

A suitable supersymmetric ahi(1) gauge invariant kinetic term in the action for
the real superfiel®/ is given by

& = / d3x dz d?6 d?6" s(6T) (W )cW + H.C. (42)

Making use of (40) and (41) above we can write this kinetic term in terms of the
component fields in the Wess—Zumino gauge

S = /d3x d¢ [ALF - VAc — AfAc, +4D?

—(VxV+iV, —iVE)?] +H.C. (43)

This form of the kinetic term in manifestly gauge invariant undert{&) gauge
transformations of (35¢), (35d), and (37); it is also invariant under SUSY transfor-
mations of the component fields in the Wess—Zumino gauge followed by a gauge
transformation (as the SUSY transformations do not respect the Wess—Zumino
gauge condition).

We next find the SUSY transformations of the component fields of the real
scalar superfiel/ by examining

8V =[¢TR— RTg, V]. (44)
The resulting transformations for the “unshifted” component fields are
8C=&Tx +x's, (45a)

- v 1 i_' Y, I
by =7 VE+EBE+2M —iN)ic+ 57 VCE + 5CcE,  (45b)

1 ~ i
sVe = —E(gftaA + Afr2g) — Z(erarbé — STtbraV;’
+xlr% —gteix,), (45¢)

$E = 2R+ K6~ L(xhete €779, 4 xle —€Txo), (450

R T T
S(M +iN) = TAc - l—l(s*r Ve + € xe), (45€)
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5h = 2D& + '5(% .V + 8, )E€ — Iéra(? . Vo, )VaE

+i(0, — 7 - V)(M —iN)&c, (45f)

5D = l—l(gT%.%]\+sTA,;)+H.C. (450)

The transformations in terms of the shifted fields will result in alterations to
(45¢), (45d), (45e), (45f), and (459), as follows:

sVa = %gTvaX — %g%az\ +H.C, (46a)

SE = %ETA—F%ET)(,; +H.C., (46b)

S(M +iN) = %éTAC - %g*(? V4 0:)xes (46c)
SA =2D& +i7 - (VE =V, +iV x V)E, (46d)
§D = i—lsf(? .V +0,)A +H.C. (46¢€)

From these SUSY transformations, it is evident that one can also define an irre-
ducible “curl” multiplet (such as in 4dM) by considering, Af, D, Vap — Vb,a,
andbez — E'b.

Itis clear from either form of the component field SUSY transformations that
the Wess—Zumino gauge form of the superfidlg is not respected. However, if
one considers a SUSY transformationf followed by aU (1) gauge transfor-
mation, one can choose the gauge transformation so as to restore the Wess—Zumino
gauge form of the superfield. The chiral superfield components of the gauge trans-
formation are chosen to satisfy

¢ —¢" =0, (47a)
i)+ (7 - Vz + Ewz)é =0, (47b)
—iF + %A@VZ&C =0. (47¢)

With this choice of gauge transformation the effective SUSY transformations in
the Wess—Zumino gauge are

smE=;5A+M®—¢p (48a)

1 1
SeffVE = —EéTraA - EATr""é — Va9, (48b)



2382 McKeon and Sherry

SeftA = 2D +i7 - (VE =V, +iV x V)§, (48¢)
SeD = %ET(? -V +8,)A +H.C., (48d)

whereE, V2, A, andD are understood to be Wess—Zumino gauge fields while
is a real scalar field.

Coupling the real vector superfield to chiral “matter” superfields can be done
as in 4dM; in addition, one can also generalize the discussion to accommodate
nonabelian gauge symmetries.

5. RELATIONSHIP BETWEEN SUSY 3,1 AND SUSY3,¢

It is clear from the results of the previous sections that the 3dE supersym-
metric models constructed bear more than a passing resemblance to the equivalent
models in 4dM. We now examine this relationship more closely, beginning with the
SUSY algebras. The relationship between SUSY i Bdimensions and 2 1
dimensions has been considered in Siegel (1979, 1980).

The usual SUSY, , algebra consists of the ISO(3,1) algebra

[P[J,! PV] = Oy (49&)
[Mu,vv P)»] = i(’?vk PM — Nux PV)! (49b)
[M;,wa M)«r] = i(nvk Mua + Nyo M, — Ny My — e — M/M)1 (49C)

together with the defining commutators for the 2-spinor ch&ge

[Muv, §1 = =i (00)" S5, (50a)
[P., S]1=0, (50b)
similar commutation relations fd_B-x and the anticommutators
(S0 S} #{S. S} =0, (51a)
{S., Sy} = 20",3P. (51b)

[We use the notation and conventions of Bailin and Love (1994)]
If we now exclude only theMg,, a = 1, 2, 3, generators from the 1SO(3,1)
algebra we are left with an ISO() U (1) subalgebra

[Pa, Po] = [Pa, Po] =0, (52a)
[Maby Pc= i((Sacpb - (Sabpc)a (52b)
[Mab, Po] =0, (52c)

[Map, Mcg] = —i(8adMbc + 8bcMad — 8acMbd — 8bdMac), (52d)
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whereP; is the generator dfl (1) andP,, Mgy, are the generators of ISO(3). The
2-spinor SUSY charges, andS; can be rewritten in terms of the SU(2) subalgebra
of ISO(3). Nothing that
i
Oab = _EfabcTC (53)

and defining

1
J2 = Eeabchc, (54)

Eqg. (50a) foru = a, v = b gives

[9° 8] = 5(*. (55)

As the SU(2) subalgebra of ISO(3) resides equally in the two SU(2) subalgebras
of ISO(3,1), when we restrict our attention of ISO(3) it is no longer necessary to
use dotted and undotted indices. The various types of spinors relafgdém be
identified as follows:

& =%, (56a)
S =S, (56b)
S = eif's, (56¢)

with €8 = €%f = —iC. We can now map the SO(3,1) 2-spinors to SU(2) spinors
as follows:

S — V2R, (57a)
S — V2R!, (57b)
S > —iv2Rg, (57¢)
S - iv2RY, (57d)

where the subscript C oRc indicates the charge conjugate defined as in (4), and
where we have replaced theindex by an -index. Nothing further that

o =(1,7) (58)
and identifying
Pt = (Z, P), (59)

we see that the anticommutators (51a) and (51b) of the SUSMgebra can be
rewritten as

{R, R} = {Rf, Rl} =0, (60a)
(R,R=7.P+2Z. (60b)
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The subalgebra of the SUQY; algebra whose bosonic part is ISO(8)U (1)
consists of Egs. (52), (55), and (60) together with

[P,R]=[Z,R] =0. (61)

This algebra is identical to the 3dE SUSY algebra we examined in Section 2.

The mappings of Eq. (57) can be used more generally to establish the con-
nection between 4dM spinors and 3dE spinors. This will provide a connection
between the model constructed in Section 3 and the Wess—Zumino model in 4dM,
and between the (1) gauge invariant model of Section 4 and super QED in 4dM.

In the latter case one must also identify the scalar fieldith the temporal com-
ponentA, of the 4-vector field in 4dM. In this identificatio, is identified with
PO, so that it is clear that the bosonic coordinateassociated with the central
chargeZ, is identified witht; % is identified with-% . However, it must be noted
that the boost operatold have been removed from the algebra.

The relationship between the SUSY models and the SUSYy models is
similar to, but quite distinct from, the way in which dimensional reduction was
used in Brinket al. (1977) where amN = 2 SUSY model in 4dM is obtained from
a SUSY model in 6dM. [In Mckeon and Sherry (2000, 2001), the Zumino model
(Zumino, 1977) in 4dE is obtained by this form of dimensional reduction.] The
central charge and its associated bosonic coordinatdisturb the link between
the two approaches. Let us recall how dimensional reduction works in Btiak
(1977). Essentially the fields in the higher dimensions are set independent of the
extra dimensions and all generators in the algebra which relate to the extra di-
mensions in any way are discarded. In each case the extra dimensions are simply
eliminated; there are no apparent central charges in the models. Another feature
of this approach is that each of the resulting modéls<{ 2 SUSY in 4dM and
the Zumino model) aren-shellSUSY models without auxiliary fields. In con-
trast, in our case we relate off-shell supersymmetric models in 4difishell
supersymmetric models in 3dE, and the necessary central charges are included.

If instead of the approach used here we were to use the form of dimensional
reduction employed in Brinkt al.(1977) to go from 3+ 1 dimensions to 3 0, it
would be tantamount to dropping thedependence in all of the fields. Essentially
this would mean Z, field] = O for each field in the model. If all the fields have
zero eigenvalue foZ, then the states associated with these fields must also have
zero eigenvalue foZ. But, as we have seen in Section 2, theigenvalue for a
state acts as anpperbound on the momentum of that state. Such a model would
have no actual content: all states would be zero momentum states and would have
zero norm. In fact, there would be no states.

Central charges can occur M > 1 SUSY algebras in 4dM. Superspace
approaches to such extended SUSY models have been developed. In standard su-
perspace approaches it proves very difficult to construct off-shell supersymmetric
models. In such approaches arguments can be given to set the dependence of all
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fields on the bosonic coordinates associated with the central charges to zero (West,
1990). Such arguments hinge on the fact {fiat D} yields Z while {D, D} yields

P in 4dM. In 3dE, as seen from (18)D, D'} is zero while{D, D't} yields both

P andZ. This difference ensures that the 4dM arguments do not apply to the cases
considered in this paper. We must retaingh@dependence if we want the full SUSY
algebra, including central charges, implemented in nontrivially on superfields in
the models.

It is worth nothing in this context that the approachiNo= 2 SUSY in 4dM
followed in Ohtaet al. (1986), where harmonic superspace is used, involves extra
dimensions associated with the central charges, and that these extra dimensions
are compactified, not ignored.

As we have retained thg-dependence in our fields, and thereby provided
representations of the full SUSY algebra in 3dE, the actions in our two models
involve integrations over. Thus a “fourth” dimension is introduced. This feature
will clearly have implications for the quantization and renormalizability of such
models.

6. SUSY ALGEBRAS IN 3dM

We now consider SUSY algebras in 3dM. These algebras differ from the
SUSY algebra in 3dE mainly because of the very different properties of spinors
in 3dM. We begin by reviewing briefly these properties and contrasting with the
situation in 3dE.

It is well known that Majorana spinors can be defined in 3dM (Kugo and
Townsend, 1983; McKeon, 2000a). Let us investigate why this is so. We will
choose as Dirag-matrices

,/0:[? _Oi:|=r2, ylz[? H:irl, y3=[g _Oi}ziﬁ (62)

satisfying

r? y° = =291, = diag(, +, +). (63)
Defining the Dirac conjugate and the charge conjugate of a Dirac 2-spiasr
v =yiA (64a)

and
Yc=Cy' (64b)

respectively, the matrices and C must satisfy (Kugo and Townsend, 1983;
McKeon 2000a)

Ayt AL = i (65a)
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and
CyrC = —yrt, (65b)
It is easy to see that in the aboyematrix representation
C=A=° (66)
can be used to solve these equations. The charge conjugate spinor is now
Yc=CATyT = —y* (67)
As
(Yc)e =¥ (68)
it follows that the Majorana condition
¥ =1vc (69)
can be satisfied by a 2-spinor, provided
vt == (70)

The consistency of a Majorana 2-spinor in 3dM means that a self-conjugate
SUSY algebra can be written down with just one spinor charge. This iN thel
SUSY algebra in 3dM. It will consist of the usual Poined80(2,1) algebra in
3dM together with a Majorana spinor generafpsatisfying the anti-commutation
relation

Q. QI=y P (71)

Justas in 4dM, it is not possible to include a central charge in this anticommutator.

However, a central charge can be included if we considdlan 2 SUSY
algebra with two Majorana spinor generat@Qgs(« = 1, 2). They will satisfy the
anticommutation relation

{Qu, Qp} = ¥ - Plus + 1 Zegs, (72)

wheree,s = —€gq, €12 = +1, andZ is the central charge operator.

We now considerthdl = 1 andN = 2 SUSY algebras in terms of Fermionic
creation and annihilation operators, as we did in Section 2 for the 3dE case. In the
N = 1 case the Majorana condition (70) means fQatkes the form

Q=i [‘g] (73)

whereq, p are real. If we form the complex operator

A=q-+ip (74)
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then, in the frame of reference whelfe= (M, 0, 0), the SUSY anticommutator
(71) becomes

{A, A} = {AT,AT =0, (75a)
(A, AT} = 2M, (75b)

showing thatAT and A can be interpreted as Fermionic creation and annihilation
operators respectively.
Inthe N = 2 case, the Majorana spinor generators take the form

| O
o = | , a=1,2, 76
M (76)
whereq,, p., « = 1, 2, are real. Taking now the linear combinations
1 .
A =5l = p2) +1i (G + Pl (77a)
and
1 .
Q= 5[(‘11 + P2) + (0 — p1)l, (77b)
we find the diagonalized form of the anticommutators
(A, A= (AT, AT = {Q, Q) = (QF, @} =0, (78a)
A, AT} =M -2Z, (78b)
@,y =M+2, (78¢)

again in the reference frame in whidh = (M, 0, 0). To interpretA’, @ as
Fermionic creation operators and © as Fermionic annihilation operators we
must require the Hilbert space of states to be positive definite. Thus we must have
either (Salam and Strathdee, 1974a; Sohnius, 1978)

M > |Z] (79)
or
M =|Z|. (80)

In the latter case the states associated with eittieor Q' are discarded as they
are zero norm states (Bogamolnyi, 1976; Olive and Witten, 1978; Osborne, 1979;
Prasad and Sommerfield, 1975). The central ch@rgets as dower bound on
M, as is typical of Minkowski spaces. We note that it is quite consistent td set
to zero at the outset, unlike the situation in 3dE.

A superspace corresponding to tNe= 1 SUSY algebra in 3dM has been
discussed (Dilke®t al,, 1997; Gatest al. 1983; Mckeon and Nguyen, 1999;
Mckeon and Portelance-Gagnin press; Siegel, 1979) and is well understood.
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In the notation of this paper it will consist of a Bosonic space with coordinates
x3,a =1, 2, 3, and a Fermionic space with coordinates provided by the Majorana
2-spinord. The Majorana spinor generatQrcan be realized on this superspace by

0 i

i = — — =(07a)i V® 81
Qi 30, 2( J/a)l ( )
while the SUSY ‘covariant derivativeD; is realized by
9 i —
Di = — + =(6y.)i V& 82
=55 307 (82)

A scalar superfieldb(x, #) when expanded in powers 6fyields the component
field expansion

D(x, 0) = A(X) + A(X)0 + F(x)66. (83)

It is well understood how to construct supersymmetric models in this case (Dilkes
etal, 1997; Gatest al.1983; Mckeon and Nguyen, 1999; Mckeon and Portelance-
Gagrg, in press; Siegel, 1979).

IntheN = 2 case one could propose a pair of Majorana 2-spinor coordinates
0, @ = 1, 2, corresponding to the Majorana 2-spinor generdgrsx = 1, 2. An
alternative approach would be to use a Dirac 2-spinor coordéhatel its Dirac
conjugate® where

0= \/iz(@l +i67) (84a)
and
G =610 = %@ﬁ i62). (84b)

This would correspond to using, in place @, in theN = 2 SUSY algebra the
Dirac 2-spinor generatdR and its Dirac conjugat® defined by

R= %(Ql +iQy), (85a)
R=Riy0= %(61 Q). (85b)

TheN = 2 SUSY algebra anticommutation relation (72) takes the following form
in terms ofR andR

{(RRI=y-P+2, (86a)
{R, R} = {R, R} = 0. (86b)

The similarity in structure between this form and the anticommutator (7) of the
SUSY algebra in 3dE, not withstanding the useéRdh (86) andR in (7), shows
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that a superspace can now be constructed foktke 2 SUSY algebra in 3dM just
as was done in Sections 2 and 3 for the SUSY algebra in 3dE. Furthermore, these
N = 2 models in 3dM can be obtained frof = 1 models in 4dM by following
the approach of section 5 above. One simply employs the subgroup 1ISG(2,1)
U(1) of ISO(3,1) in place of ISO(3k U(1). This is consistent with Siegel's
treatment ofN = 2 SUSY models in 3dM (Siegel, 1979, 1980).

We note thatN = 2 SUSY models in 3dM do not require harmonic super-
space, unlikeN = 2 SUSY models in 4dM (Galperigt al,, 1984) or SUSY models
in 4dE (Mckeon, 2000b).

7. DISCUSSION

The main focus of this paper has been on examination of the supersymmetric
extension of ISO(3), the symmetric group associated with 3dE. We have considered
in Section 2 the simplest SUSY algebra in 3dE, and we saw that it must contain a
central charge generator. This resultis crucial; we saw that every state of the theory
is subject to an upper bound on the momentum of the state, namely the eigenvalue
of Z for the state. These conclusions followed very simply from the structure of
the SUSY algebra in 3dE. We further investigated briefly the representations of
the algebra and classified the various states in a given representation.

The SUSY algebra in 3dE is seen to involve a Dirac 2-spinor SUSY charge;
thusitis more akinto ahl = 2 SUSY algebrathan ad = 1 SUSY algebra. Nev-
erthless, we developed in SectiB a superspace approach with scalar superfields
for this SUSY algebra. We wrote down a realization of each of the generators of the
algebrain terms of differential operators on the superspace and we also introduced
SUSY covariant derivativdd and Dt operators. In doing this it was necessary
to include in the superspace a bosonic coordinate conjugate to the central charge
operatorZ, denoted by . Unlike the situation in 4dM, it is neither possible nor
useful to project out of the theory all dependence ohhe fact thaZ provides an
upper bound on the momentum of states means that we mustgedaipendence.

In our superspace we introduced a scalar superfield. We found, as in 4dM,
that imposing a chiral constrai@® = 0 led to an irreducible representation of
the SUSY algebra. We also constructed a supersymmetric action for the chiral su-
perfield, including kinetic, mass, and self-interaction terms, in both superfield and
component field forms. In Section 4 we saw that a real superfield could undergo
U (1) gauge transformations with a chiral superfield gauge function. A supersym-
metricU (1) gauge invariant model, analogous to super QED in 4dM, was written
down, both in superfield form and in component field form in a Wess—Zumino-like
gauge. In each of the cases we considered, we deduced the form of the SUSY field
transformations for the component fields.

In Section 5 we discussed the relationship between the models we constructed
in 3dE and the well-known Wess—Zumino and super QED models in 4dM. The
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relationship followed from the relationship between the corresponding SUSY al-
gebras. In essence, the SUSY algebra in 3dE corresponds to the subalgebra of the
SUSY algebra in 4dM where the Lorentz boost generatb?$ alone have been
excised.

Two aspects, in particular, of our work will require further examination. They
both concern the central charge operao©On the one handZ provides a bound
for |P|. The significance of this bound in a quantized theory is not clear at the
moment. On the other hand, gives rise to an extra bosonic dimension with
coordinate; . Again, the implications of this extra dimension is unclear for both
guantization and renormalizability.

We are currently investigating a problem somewhat related to the theme of
this paper. It concerns the supersymmetric extension of the Galilean grodpin 3
dimensions. The Galilean group can be obtained by a Wigner—Inonu contraction
of ISO(3,1) (Gilmore, 1974); a similar contraction of the SUSY algebra-n13
may yield this extension.

APPENDIX A

In this appendix we gather together conventions concerning Dirac spinors
and matrices in three-dimensional Euclidean space.

We choose to use hermitian Diragematrices, which we identify with the
Pauli spin matrices,

il I TR b e Y B
which satisfy
t3? =53 e a b,c,=1,2,3 (A2)
We identify the charge conjugation matrix as
C =12 (A3)
so that
cric = _7aT,
and the charge conjugate of a Dirac spifias given by
Oc =COTT. (A4)
Fierz identities follow from the -identities
874 + 8ij Sl = 2611 8kj, (A5)
ti?8k| + 818 = ri?ékj + & rfj, (AB)

Eabcfi? T|f| =i (ri","ék,- — 5” Tl?j)' (A?)
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Fierz identities which have been used in this paper are

(0T 20 (010) = —(0Tr20)(6T1), (A8)
(£70)(076c) = —2(T6c)(00), (A9)
1
61720)(0T720) = —s2(H16)2 = _Eaab(ege)(mec), (A10)
1
6.6/ = —Eck.efec, (A11)
i 1o i
06 = —ECWCQ, (A12)
1
(AT0)(E70) = S(ATEC)0L0), (A13)
1
(67A)(6'8) = 5(6dA)(E6c), (A14)
1 1
©TA)ETO) = —E(GTraf?)(STfaA) - 5(9*0)@*1\)- (A15)
For Grassmann integration we employ
1
/dze 66 = —5Cij = /dZBTGiTQJT (A16)
so that
/ d%0 (blo) = 1= f d?0t (o76c). (A17)
The bosonic operato®? andZ are represented by
.0 .
Pa = — M = —|Va, (AlS)
Z——ii——ia (A19)
=iy = ;.
We also use the notation
Vaf(x,¢) = fa, (A20)
9 f(x,¢)= f.. (A21)
For derivatives with respect to Grassman coordinates we use the notation
ad
— =0, A22
g =0 (A22)
a0
3. (A23)

a6t
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APPENDIX B

In this appendix we note that, remarkably, there exists a superalgebra as-
sociated with 3dE in which B2, P®] £ 0. If we defineQ = Q' r,, then the
superalgebra

QQ=7-3, (QQH=7-P (Bla,b)
1 ~ 1
[‘]aa Q] = _Etan [Pa! Q] = EQTTa= (B].C,d)
[J3, JP] =ie?PCJC,  [P? PP] = —iedPCC, (Ble,f)
[J3, PP] =iedbepe (B1g)
satisfies the Jacobi identities. Alternatively, if we set
Q=¥ - Qe (B22)
Q= 252 = Qe (B2b)
then (Bla,b) becomes
~ ~ 1. -
{Q1, Q2} = {Q2, Q1} = 5? -J, (B3a)
~ - 1. -
{Q1, Q1} = {Q2, Q2} = 5T P. (B3b)
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